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Section 1

INTRODUCTION

HISTORICAL PERSPECTIVE

The Theory of Signal Detection (TSD) began with theoretical

developments made in electrical engineering in the early 1950's.

Mathematicians and engineers saw relevance of statistical

decision theory to the general detection problem. They combined

decision theory with an elaboration of the concept of the ideal

observer, from electronic communications and radar theory, to

form a general theory of signal detectability (Swets, 1964).

The part taken from statistical decision theory provides a

way of controlling and measuring the criterion the observer uses

in making decisions about signal existence, thus providing a

measure of the observer's sensitivity that is independent of his

decision criterion. This measure of sensitivity has been found

to be practically invariant over several different psychophysical

procedures, or detection tasks (Green and Swets, 1966).

The part that grew from work in electronic communications

specifies the mathematically ideal detector and, therefore, ideal

sensitivity, as a function of measurable parameters of the sig-

nals and the interfering noise, for several kinds of signals.

This theoretical structure defines relevant physical variables in

quantitative terms. It also describes the effects of changes in

these variables, and how uncertainty about the specific values of

these variables will affect certain detectors. Normative stand-
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ards of performance allow one to gauge how the efficiency of

human sensory processes varies with changes in the stimulus.

This has allowed researchers to make inferences about the kind

and extent of sensory information that is utilized by the observ-

er, and about the nature of sensory processing (Green and Swets,

1966).

The theory specifies the mathematically ideal or optimal

decision process. It is not intended to apply to any realizable

sensing device, and was constructed without regard for human

sensory processes. However, it soon became apparent that the

general theory is a good approximation to a descriptive theory of

human detection and recognition behavior. Researchers of psy-

chophysics saw several analogies between this description of

ideal behavior and various aspects of the perceptual process.

Detection theory seemed to provide a framework for a realistic

description of the behavior of the human observer in a variety of

perceptual tasks (Swets, Tanner, and Birdsall, 1964).

The theory also serves as a guide for the study of human

perceptual processes specifying appropriate experimental methods.

The theory not only discloses new problems but also provides new

approaches to old problems (Swets, 1964).

An experiment in vision (Tanner and Swets, 1954) was among

earliest applications of detection theory in psychology. Smith

and Wilson (1953) demonstrated its applicability to audition.

Both of the above experiments concentrated on decision aspects of

detection.
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IMPORTANCE OF TSD FOR TARGET ACQUISITION

More than sensory information is involved in detection. The

process of perceiving, as represented in Figure 1, is not merely

one of passively reflecting events in the environment, but one to

which perceiver himself makes a substantial contribution. The

observer relates his sense data to information he has previously

acquired, and to his gcals, in a manner specified by statistical

decision theory (Swets, Tanner and Birdsall, 1964). Most non-

sensory factors are integrated into a single variable, the

criterion. This results in a pure measure of sensitivity,

largely unaffected by other than physical variables.

In classical psychophysical experiments, results expressed

as thresholds were a function of both stimulus detectability and

the observer's criterion. The threshold measure of sensitivity

to stimuli may be contaminated by changes in the observer's

criterion. Classic methods of psychophysics make effective

provision for only a single free parameter, one that is associat-

ed with the sensitivity of the observer. They contain no analyt-

ical procedure for specifying independently the observer's crite-

rion. These two aspects of performance are confounded in experi-

ments in which the dependent variable is the intensity of the

stimulus that is required for a threshold response. Changes in

criterion, or different observers having different criteria will

result in inconsistent responses to the same level of stimulus

intensity within an individual observer or between observers.

The application of TSD solves the problem in psychophysical
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Figure 1. The process of perceiving.



experimentation of controlling or specifying observer criterion

for making a pviceptual judgement. TSD provides a quantitative

measure of the criterion, leaving a relatively pure measure of

sensitivity (Swets et al., 1966). TSD and associated methodology

afford a means of independently measuring each of these factors.

Separation of factors that influence the observer's

attitudes from those that influence sensitivity is a major

contribution of the psychophysical application of statistical

decision theory. This separation allows the specification of the

perceiver's contribution to perception at other than

conversational level, thus providing quantitative relationships

between the nonsensory factors and both independent and dependent

variables (Swets et al., 1964).

TSD is a normative theory. Having a standard with which to

compare observer performance aids in description and interpreta-

tion of experimental results. (Swets et al., 1964).

SUMMARY OF REPORT

Although TSD has been applied to a number of areas of

psychophysical research, this report focuses on the review of

that literature which addresses its application to visual target

detection/recognition. The focus of this report is heavily

application oriented.

Part 2 presents a discussion of statistical decision theory,

including the elements of the decision problem, assumptions,

mathematical notation, decision outcomes, optimization of

decision making, and decision goals.
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Part 3 presents a discussion of TSD as applied to operator

target acquisition performance. This includes a description of

the properties of the target and background and discussion of the

operator's decision rule. The separation of measures of operator

perceptual sensitivity and response bias is discussed.

Procedures for calculation of the d' measure of sensitivity and

Beta (B) criterion measure are covered. The theoretical

significance of the ROC curve is discussed as well as

interpretation of curves.

Part 4 discusses three basic procedures for data collection

under the TSD paradigm. These include the yes - no procedure,

the confidence interval method, and the forced choice procedure.

Part 5 gives a discussion of the underlying assumptions of

TSD. This section also persents a discussion of appropriate

tests to determine whether the assumptions have been met and

application of non-parametric analysis methods to cases where

specific assumptions have not been met.

Part 6 presents a discussion of the application of TSD to

acquisition of targets in sensor imagery. Methodology and

results of applicable studies are discussed.

Part 7 presents a summary evaluation of applicability of TSD

to the visual target acquisition task.

6 iII I



Section 2

ELEMENTS OF THE THEORY OF SIGNAL DETECTION

STATISTICAL DECISION THEORY

The application of the theory of decision making to situa-

tions in which certain "signals" may or may not be added to a

random background disturbance called "noise" is a major part of

decision theory.

Decision Problem Minimal Elements

Within the context of the signal detection decision problem

there are only two possible states of the world. These are the

absence of a signal or the presence of a signal.

Another essential element of the decision problem is the

information. This may be defined as the interval during which

the observer attends to some sensory display or "makes an

observation."

The final element of the decision problem is the decision

itself. There are two possible decisions: (1) Sigral Absent or

(2) Signal Present (Green and Swets, 1966).

Assumptions

There are a number of assumptions associated with the

decision problem. First among these is the assumption that the

observer is fallible.

There are assumed to be different distributions of

observations for the "signal" state of the world versus the "no

7



signal" state of the world. This means that there exist

differing probability densities for each possible observation

given both the "signal" and "no signal" distributions. An

observation is like an event in probability theory. That is, an

observation is an element of a set such that a probability can be

defined for each event. The probability of one of the events

occurring on any given trial is unity.

It is assumed that the available responses are determined by

the nature of the decision task. The available responses are

often in one-to-one correspondence with the possible states of

the world.

It is further assumed that the response of the observer is

dictated by some policy or strategy on the part of the observer.

This policy or strategy is referred to as the "decision rule."

The "decision rule" is a mathematical function that maps the

space of observations onto the space of responses. The "decision

rule" can be expressed as a function, or a simple partition, of

the elements of the observation class.

Notation

Most texts on statistical decision theory employ a similar

notation. The notation described herein follows that of Green

and Swets (1988).

The information or evidence, usually fallible, about a

possible state of the world, hi, is designated as ek. The

decision-maker selects an alternative state of the world, Hj,

8



which may or may not be correct. There must be at least two

possible states of the world, h, or h 2 ; hj denotes the world in

the jth state. The response of the decision-maker is then to

accept one or the other hypothesis about possible states of the

world; Hj denotes the decision-maker selection the jth

hypothesis. The decision-maker's behavior is described as

follows: P(Hilhj) or "the probability of the decision-maker

accepting the ith hypothesis about the state of the world given

that the world is in the jth state." If i = j, the decision-

maker's hypothesis about the state of the world matches the

actual state of the worlO, and the response is correct.

The probability of occurrence of any single ek usually

depends upon the state of the world. P(eklhi) denotes the

probability of ek occurring given that the world is in the ith

state. That is, the probability of ek is conditional on hi. The

conditional probability, P(ekJhi), is generally not equal to the

conditional probability, P(eklhj).

An a probability is the probability of any particular

state of the world prior to the observation. P(hj) represents

the A Rior probability of any particular hypothesis being true.

A osteriori probability is the probability of the

hypothesis conditional on the occurrence of the observation.

This is the probability of the truth of each hypothesis after the

event has occurred. P(hijek) denotes the a Dosteriori

probability of hi being true, given that event ek has occurred.

The relationship of a Rosteriori probability to conditional and a

9
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priori probabilities is as follows: P(hiek) = P(ek) P(hilek)

where P(hilek) denotes the probability of the joint occurrence of

hi and ek. P(hiek) = P(hi) P(eklhi). since ek can occur only if

some hypothesis holds, P(ek) = ZP(hi) P(eklhi). This leads to

Bayes rule: P(hilek) = [P(hi) P(eklhi)]/P(ek) = [P(hi)

P(eklhi))/(ZP(hi) P(eklhi)], which expresses the (a posteriori)

probability that the world is in the ith state given that

information ek has been received (Skolnik, 1980).

The likelihood ratio is the ratio of the probabilities of an

event under two different hypotheses. This ratio evaluates the

evidence provided by an observation independent of the a priori

probabilities of the hypotheses. It is a quantity that expresses

the strength of evidence associated with each observation. For

two hypotheses, lij(ek) = P(eklhj) = l/lij(ek) where lij is read

"the likelihood ratio of event ek for hypothesis i relative to

hypothesis j." If more than two hypotheses are involved in the

decision problem, the number of likelihood ratios required to

specify the decision problem completely is one less than the

number of hypotheses. Likelihood ratio remains a single real

number no matter what the Structure of the observation. The

observation may be multidimensional such as a certain

configuration of weather -- temperature, wind velocity, time of

year and other factors.

Decision OuLcomes

Any singjLe decision in a target detection task cmn be

cateqorized as either right or wrong. An evatuation of
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performance is then generally based on some function of the

average number of correct and incorrect decisions. There are

always at least two types of correct decisions and two types of

errors, as shown in the decision space depicted in Figure 2. The

two types of correct decisions may be referred to as hit (decla-

ration of a target detection when a target was indeed present)

and correct rejection (declaration of no target detection when

indeed no target was present). The two types of errors are false

alarms (declaration of a target detection when in reality no

target was present) and miss (declaration of no target present

when a target was indeed present).

As an operator's decision criterion is shifted, it is

possible to increase the percentage of hits or to decrease the

percentage of false alarms. However, it is not possible to

simultaneously increase the probability of both types of correct

decisions. A decrease in the probability of one type of error is

accompanied by an increase in the probability of the other type

of error. That is, the operator may adopt a more stringent

criterion, thus reducing false alarms, but would then increase

the number of misses. If the operator adopts a more lax

criterion, thus reducing the number of misses, the number of

false alarms will then increase. Depending on the situation,

some types of errors may or may not be more unacceptable than

others. For example, the penalty may be greater for missed

targets than for false alarms or vice versa.

In applying likelihood ratio to optimize decision making,

11



TRUE TARGET CONDITION

TARGET NO TARGET

FALSE
TARGET HIT ALAR

REPORTED ALARM

TARGET
CONDITION CORRECTNO TARGET MISSRECTO REJECTION]

Figure 2. Decision space consisting of two types of correct decisions

and two types of errors.
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the decision-maker may attempt to satisfy any of several goals.

These include maximization of a weighted combination,

maximization of expected value, maximization of percentage of

correct responses, or satisfaction of the Neyman-Pearson

objective. A decision rule that maximizes the weighted

combination, P(HIIhl) - BP(HIIh 0 ) is to choose H1 if and only if

l 1 o(ei) is Ž B. The expected value is maximized by accepting as

hI all those events whose likelihood ratio of hI to h0 is equa]

to or greater than B as defined by:

B = (V 0 0 + V0 1 )P(h 0 )/(VII + Vl0)P(hl),

where V0 0 = value associated with a correct choice of H0 ,

Vol value (cost) associated with incorrect choice of H0

when, in fact, H1 is the correct alternative

V1 1 = value associated with a correct choice of H1

V1 0 = value (cost) associated with an incorrect choice of H0

when, in fact, HI is the correct alternative.

If all values associated with correct decisions are equally

valued and all errors are equally intolerable, then the goal may

be simply to maximize the percentage of correct responses. That

is, the value of being correct is set at unity and the cost of an

error is et at zero. The percentage of correct decisions is

maximized if B = P(h 0 )/P(hl). The Neyman-Pearson objective is as

follows: for some constant k, where 0 5 k < 1, set P(H 1 Ih 0 ) = k

and then maximize P(H 1 Ihl). This goal is utilized by those who

perform statistical tests. k ia usually set to 0.01 or 0.05 and

then one endeavors to design a test to maximize the acceptance of

13



hI when it is true while holding the error rate at the level k.

The decision rule is therefore: Choose Hi for all events whose

likelihood ratio is equal to or exceeds B, where B is selected

such that P(Hljh 0 ) = k (Green and Swets, 1966).

SUMMARY

Within the context of the signal detection decision problem,

there are two possible states of the world and two possible

decisions. This results in four possible outcomes, two of which

are correct decisions and two of which are incorrect decisions.

It is assumed that the response of the observer is dictated by

some policy or strategy which is referred to as the "decision

rule." Any of a number of "decision ..ules" may be employed.

Decision rules are often related to the likelihood ratio; that

is, the rule states that H1 should be chosen as a response if

l1 0 (ei) is Ž 8, where B is some critical value corresponding to

the goal of the decision-maker.

14



Section 3

APPLICATION OF THEORY OF SIGNAL DETECTION

TO VISUAL TARGET ACQUISITION

An operator's performance in a target detection task may be

a function of (1) properties of the target and imagery such as

image resolution, grazing angle, degree of camouflage, etc.; and

(2) operator's decision rule (e.g., presumed to be related to the

payoff for correctly identifying a target and the consequences

associated with false alarms). Performance measures such as

probability of hits and probability of false alarms do not allow

one to unambiguously interpret the results; that is, the

contribution to the response measures associated with stimulus

characteristics and response bias are not separable. For

example, an operator may achieve a high probability of hits, but

achieve this result by calling everything a target (e.g., a high

probability of false alarms).

The Theory of Signal Detection (TSD) provides a means by

which one can obtain two independent measures that relate to

operator sensitivity and response bias, respectively (Green and

Swets, 1966). The measure of sensitivity, referred to as d', is

generally affected by sensory/perceptual factors such as image

resolution and target-to-background relationship. B, on the

other hand, is a measure of response bias which is affected by

such variables as the consequences of misses and false alarms,

rules of engagement, a priori knowledge, expectations, and

15



training. The value of B is an index of the operator's response

criterion.

The operator must establish a policy that defines the

circumstances under which thO ' cbzservation will be regarded as

resulting from each of the two possible events. Since operator

is assumed to be capable of locating a criterion at any point

along the continuum of observations, it is of interest to examine

the various factors that, according to the theory, will influence

his choice of a particular criterion. (Swets et al., 1964)

In a signal detection experiment the following performance

paramezers are computed:

(1) Probability of a hit [p(Hit)]

(2) Probability of a false alarm [p(FA)]

(3) Probability of a miss (p(Miss)]

(4) Probability of a correct rejection [p(CR)]

Figure 3 illustrates how these performance parameters are related

to the noise and signal-plus-noise distributions.

The theory proposes that d' is equal to the difference

between the means of the signal and noise (SN) and noise (N)

distributions (uSN - uN) expressed in standard deviation units of

the N distribution.

Because the location of the SN distribution with respect to

that of the N distribution is entirely a function of stimulus

intensity and properties of the sensory system, d' is a pure

index of stimulus detectability which is independent of the

location of the operator's criterion (B).

16



The value of B simply weights the hits and false alarms.

8 is determined by the a priori probabilities of occurrence of

signal and of noise alone and by the values associated with the

individual decision outcomes. Optimal cutoff aloiag the x axis is

at the point on this axis where the ratio of the ordinate value

of the signal and noise function to the ordinate value of the

noise function is a certain number, B. B specifies the optimal

weighting of hits relative to false alarms. The operator's

criterion should always be located at the point on the x axis

corresponding to the value of B. For any detection goal to which

the operator may subscribe, and for any set of parameters that

may characterize a detection situation (such as a priori

probabilities and values associated with decision outcomes) the

optimal criterion may be specified in terms of a single number, B

(Swets et al., 1964).

In signal detection analysis, the corresponding Z scores

from a normal distribution for the proportions of hits and FAs

are used to calculate d', which is the measure of target detect-

ability or operator sensitivity (Gescheider, 1976). A Z-score

presents the number or standard deviation units that a particular

hit rate or false alarm rate is from the mean of a standard (mean

- 0, standard deviation = 1.0) normal distribution. The equation

used to calculate d' is:

d = Z(Hits) - Z(FA)

B, on the other hand, is the ratio of the ordinate of the SN

distribution at the criterion to the ordinate of the N distri-

17



bution at the criterion, as follows:

fSN(X) at criterion
B= --

fN(X) at criterion

where f is the function for computing the ordinate of X along the

normal curve. A low value of B represents a lax criterion where

the operator will be liberal about reporting "signals," while a

high value of B represents a strict criterion where the operator

will be conservative about reporting signals.

Figure 3 shows the relationship between p(Hit), p(FA),

p(Miss) and p(CR) for two identified curves representing the N

and SN distributions. The criterion line in this Figure is just

one of an infinite number of criterion lines. The setting of the

criterion line affects the value of B and is independent of d'.

If the criterion line were shifted to the left, the value of B

would decrease, indicating that the operator is using a lax

criterion. On the other hand, if the criterion line were shifted

to the right, the value of B would increase, indicating that the

operator is using a strict criterion. Movement of the criterion

line, and hence the value of B, has no effect on d' since this

value is a function of the distance between the SN and N

distributions. The distance between these two distributions

affects the operator's sensitivity in detecting signals from the

noise.

In TSD studies, both parameters affecting perceptilal

sensitivity and parameters affecting decision criterion may be

manipulated. This allows the determination of receiver operating

18
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p(CR) p(HIT)

x
CRITERION

Figure 3. Relationship of p(Hit), p(FA), p(Miss) and p(CR) to N

and SN distributions.
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characteristic (ROC) curves (Gesheider, 1976). An ROC shows the

relationship between false alarm and hit rates. Figure 4

presents a family of ROC curves with d' values ranging from 0.0

(chance performance) to 3.0 (near-perfect performance). Points

along a given ROC are generated as a function of changes in the

operator's criterion. The value of can be computed from an ROC

by determining the slope of a tangent at any given point along

the ROC.

Figure 5 shows the effect of changes in 8 on the shape of

the ROC. As can be seen, variations in the operator's criterion

results in different points along the same ROC curve while varia-

tion of signal strength produces different ROC curves.

The ROC curves are useful in evaluating whether the assump-

tions underlying the TSD paradigm have been met. in addition,

they are useful in determining if the effects of an experimental

variable on performance are due to changes in response criteria.

(e.g., overlapping ROC curves) or to differences in sensitivity

(e.g., different ROC curves that do not overlap).

In order to generate ROC curves, pairs of H(hit) and p(FA)

must be generated where the operator's response criteria varies.

This can be accomplished by varying such variables as: (1) target

probability, and (2) payoffs and consequences of hits and false

alarms. These variables would affect an operator's response

criteria and therefore would yield different points in an ROC

space such that a curve characterizing performance could be

drawn.
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Figure 4. Family of ROC curves with d' values ranging from 0.0 to
2.0.
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Figure 5. Illustration of the manner in which ROC curves are predicted
from TSD. (a) depicts a situation where signal strength is sufficient to
result in only a slight overlap of the N and SN distributions, while (b)
depicts a situation where signal strength is weak, resulting in considerable
overlap.
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One of main sources of evidence supporting TSD is experimental

manipulation of variables resulting in data plotted as ROC

curves. Shapes of ROC curves for various stimulus intensities

can be generated from the postulates of the theory and checked

against empirical data. Variation in signal strength produces

different ROC curves. Variation in the operator's criterion

results in different points along the same ROC curve (Gescheider,

1976).

To illustrate the manner in which ROC curves are predicted

from TSD, Figure 5 depicts a situation where signal strength is

sufficient to result in only slight overlap of the N and SN

probability distributions. The vertical lines represent

locations of criterion that might be associated with particalar

conditions of stimulus probability and payoffs. According to

TSD, each point on an ROC curve is determined by the location of

the operator's criterion. If the observation is to the right of

the criterion, the operator will say "yes." The proportion of

yes decisions is equivalent to the proportion of the area under

the curve to the right of the criterion. Values of p(yes/N) and

p(yes/SN) are determined by finding the areas under the N and SN

curves, respectively, which are to the right of the criterion.

As the criterion is changed, the values of the p(yes/N) and

p(yes/SN) change. These values, when plotted, form an ROC curve.

The lower curve of Figure 5 depicts the situation where

signal strength is so weak that it results in considerable

overlap between the N and SN distributions. TSD is strongly
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supported by the finding that theoretical ROC curves gjenerated in

this manner are very similar to those obtained experimentally

(Gescheider, 1976).

The theoretical concept of signal detectabil.ity czan be

"measured by determining on which member of a family of ROC curves

an operator's responses fall, thus ascertaining the approximate

value of d'. Exact values of d' can be derived from the

empirical values of p(yes/SN) and p(yes/N). For a particular

separation of the SN and N distributions, the value of d' will

remain constant for all possible criterion positions. The ROC

curve is, theretore, a description of performance changes which

are accounted for by a constant d' and a continuously variable

criterion (Geschcider, 1976).

Once the correct ROC curve has been determined, the location

of the operator's criterion, 8, can be determined by observing

exactly where on the ROC curve the point is located. If the

point is near the bottom of the ROC curve, where the slope is

great, the criterion is high; if the point is near the top of the

curve where the slope is slight, the criterion is low. The exact

value of 8 is equal to the slope of the ROC curve at a particular

point. B is a value of the likelihood ratio; the ratio of the

ordinate of the SN distribution at the criterion to the ordinate

of the N distribution at the criterion.
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Section 4

THREE PROCEDURES USED IN TSD

One of three procedures is generally employed in TSD

studies. These are the yes - no procedure, the forced choice

procedure, and the confidence rating procedure.

YES-NO PROCEDURE

Observers are given a long series of trials (usually more

than 300 per session), some proportion of which are SN while the

others are N only. For each observation, one of two mutually

exclusive alternatives is presented within a clearly marked

observation interval. The observer is usually told what propor-

tion of the trials will contain a signal as well as the payoffs

and penalties associated with the four possible decision

outcomes. The observer is asked to respond by selecting one of

the two permissible response alternatives (Gescheider, 1976;

Green and Swets, 1966).

An ROC curve can be plotted for a single signal strength if

the proportions of hits and false alarms are plotted for several

criterion locations. Data for different criterion levels are

often obtained by changing signal probability or payoff contin-

gencies for different sessions. Tanner, Swets, and Green (1956)

have shown experimentally that while large variations in the

observer's criterion were produced by two distinct procedures

(variation of signal probability and variation of payoff contin-
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gencies) the d' measurement of sensitivity remained stable under

all conditions. This is as predicted by TSD, because the physi-

cal stimulus remained the same and the shape and locations of the

N and SN distributions did not change. Therefore sensitivity did

not change (Gescheider, 1976).

If data are collected for a single session, and proportions

of hits and false alarms are available for only one criterion

location, the values of d' and 8 can be estimated from the data.

However, an ROC curve cannot be plotted. The difference between

the z scores for hits and false alarms will yield an estimate of

d'. The value of B can be obtained by dividing the ordinate

value on the normal curve corresponding to the z score for hits

by the ordinate value corresponding to the false alarms. When

ROC curves are not available to check the validity of the normal

distribution and equal variance assumptions, measures of

sensitivity not requiring these assumptions should be used

whenever possible (Gescheider, 1976). Such a nonparametric

measure of sensitivity, termed A', has been proposed by Pollack

and Norman (1964). The formula for calculating A' is:.isl

1/2 + [p(hits)-p(false alarms)][l-p(hits)-p(false alarms))
A' = -----------------------------------------------------

(4p(hits)] (1-p(false alarms))

(Gescheider (1976).

FORCED CHOICE PROCEDURE

The forced choice procedure is an excellent technique for

obtaining a measure of the observer's sensitivity which is

uncontaminated by fluctuations in his criterion. On a particular
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trial, two or more observation intervals are presented and it is

the observer's task to report which observation interval con-

tained a signal. The assumption is made that in the absence of

response bias toward one or more of the observation intervals the

observer chooses the observation interval containing the largest

sensory observation. Since the observer's criterion is not a

factor in such a judgement the proportion of correct responses

p(c) can be used as a measure of sensitivity. The value of p(c)

will be underestimated when response bias toward one of the

observation intervals exists. Procedures for correcting the p(c)

obtained when response bias exists are found in Green and Swets

(1966).

CONFIDENCE RATING PROCEDURE

The confidence rating method allows the experimenter to

obtain an ROC curve from data in a single session within which

signal probability and payoff contingencies are fixed. The

method is very economical; data for several points on an ROC

curve can be obtained for a single experimental condition by

having the observer make a confidence rating for each of his yes

- no judgements. It is assumed that to make his ratings, the

observer sets up n-1 criteria along the sensory continuum to

delineate his rating categories. The number of criteria is one

less than the number of rating categories (Gescheider,

1976).

During the experimental session, the proportion of responses
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for each of the rating categories for the SN trials and for the N

trials are determined. One can then calculate the hit and false

alarm rates that would occur if the observer were induced to set

his yes - no criterion at each of the n-1 criterion points

defined by the n rating categories. Each of the n-1 pairs of hit

and false alarm proportions that result from this procedure

provides a point on an ROC curve (Gescheider, 1976).

Because sufficient data can be quickly obtained for con-

structing an ROC curve by the confidence rating procedure, its

use can provide a convenient means of testing the hypothesis of

normality of N and SN distributions and the equal variance of N

and SN distributions. Green and Swets (1966) have demonstrated

the validity of the confidence rating procedure. The confidence

rating procedure was found to yield very similar values of signal

detectability to those obtained by the yes - no procedure

(Gescheider, 1976).
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Section 5

ASSUMPTIONS ASSOCIATED WITH TSD AND THEIR TESTS

The form of the ROC curve predicted from TSD can be more

easily subjected to experimental tests if the values of p(yesISN)

and p(yeslN) obtained in an experiment are plotted on the ROC

curve as z scores. If the N and SN distributions are normal in

form and also have equal variances, the ROC curves should be

linear with a slope of 1.0 when z scores for hits are plotted

against z scores for false alarms. In the normal distribution

and equal variance situation, when the criterion is shifted by a

particular z score distance on the N distribution, it is also

shifted by exactly the same distance on the SN distribution. The

linearity prediction follows from the assumption that the N and

SN distributions are normal in form. The prediction of a slope

of 1.0 follows from the assumption of equal N and SN variances.

The prediction from TSD is that ROC curves plotted from z scores

should be linear with a slope of 1.0. Standard procedure is to

determine the best fitting straight line for the data plotted as

z scores. The use of the method of least squares will provide

the best estimate of the intercept and slope of the function. If

the data points do not significantly deviate from the function,

the assumption of normal distribution is .4ported. If the slope

of the function does not significantly dev..ate from 1.0, the

equal variance assumption is supported.

Empirical ROC curves plotted as z scores are almost always
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linear, leading to a rather general acceptance of the hypothesis

that the N and SN distributi.ns are normal. The assumption that

the N and SN distributions have equal variances is not suppnrted

in most experiments. The slope of the ROC curve is frequently

found to be less than 1.0, a result usually explained by assuming

that the variance is greater for the SN than for the N

distribution. The variance of the SN distribution is assumed to

increase as the mean of the distribution increases.

In cases where the variance of the SN distribution is great-

er than that of the N distribution, the symbol 6m, rather than

d', is sometimes used to denote the difference between the means

of normal N and SN distributions. The quantities d' and 6m are

symbols for the same measures of signal detectability applied to

the cases of equal and unequal variances, respectively. The value

of 6m is equal to the absolute difference between z(yesIN) and

z(yesISN) at a point where z(yesISN) is equal to 0.

A measure of signal detectability that is sometimes used

instead of 6m is de'. The value of de' is the absolute dfference

between z(yeslN) and z(yesISN) at a point on the ROC curve where

it crosses the negative diagonal. The primary benefit of using

this measure is that it gives equal weight to sN and sSN

(Gescheider, 1976).
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Section 6

APPLICATIONS OF TSD TO VISUAL TARGET ACQUISITION TASKS

GREENING (1986) AND GREENING AND FOYLE (1988)

Greening (1986) investigated the applicability of the signal

detection paradigm to the investigation of targeting decisions

with multiple data sources. The context for this investigation

was a Navy air-attack targeting system making use of data from

on-board and remote imaging sensors, briefings and nonimaging

sources. Greening defines the decision situation as extremely

difficult due to requirement to make a difficult set of targeting

decisions under conditions of extreme risk and urgency. He

points out that there is uncertainty about the validity of every

information source, and that difficult choices must be made

concerning the employment of various sensors and data sources,

and the interpretation of their outputs. The targeting function

involves a search, the detection of a candidate object and its

classification as target or nontarget. Greening points out that

"As the number and variety of target data sources
increase, the task of the observer changes character.
Instead of the deep-seated and over-learned process
of integrating and understanding a sequence of direct
visual glimpses of the earth's surface, the observer
must select the appropriate sensor(s), translate
differing scales and coordinate systems, and interpret
images, as well as nonimage data which will include
nonvisual features of the target and environment. In
time-limited scenarios especially, the potential
utility of the multiple-source data may be more tnan
offset by the complexity of the perceptual and decision
process required of the observer." (pg 4)
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Greening's analysis of the target detection problem takes an

inside-out approach which can be characterized as starting with

an aircrew member, embedded in an attack mission, faced with a

targeting assignment. The focus of the study was to describe his

targeting decisions and determine what information can be brought

to bear on those decisions. One way of looking at the targeting

decision process is that the observer evaluating a data input

must establish a criterion "score" for inclusion of an object in

the target class. If his criterion is set too high, he will

almost surely be right when he classifies an object as a target,

but will miss many other targets. Too low a criterion will

include more targets but also more false alarms.

The theory of signal detection provides a means of connect-

ing performance to sensor quality and to the kinds of confusion

objects present (through the sensitivity parameter, d'). The

receiver operating characteristic (ROC) concept and the ROC plot

provides a means of trading off criterion level and classifica-

tion performance. The extension of signal detection methods to

multiple observations with adjustable criterion levels provides a

means for estimating the performance gains which may be made

using successive observations with the same sensor or a different

sensor. Decision theory provides formal procedures for optimiz-

ing decisions, based upon assigned costs and values and known or

estimated probabilities of success. While quantification of

costs and values in combat situations is difficult, the theory

will show the sensitivity of outcomes to postulated changes
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(Greening, 1986).

Greening (1986) describes an imaginary test situation in

which an observer is shown a long series of images. After each

observation, the observer must make a judgement as to whether the

object is a member of a target class (and how sure he is). The

judgement might be expressed as a rating, varying from "certain

target" to "certain nontarget" with any number of intermediate

levels of uncertainty.

In general, the observer doesn't know whether the judgement

is right or not. The images come from two distributions (target

and nontarget) which are likely to overlap to some extent (i.e.,

some target images are easily confused with nontarget images).

The observer is faced with a decision related to the

observed image. For an attack mission, he must decide whether a

particular image justifies releasing a weapon. He must decide

what to do with the equivocal judgements, without knowledge of

the underlying target/nontarget distributions. Depending on the

tactical situation, he will decide to attack only if the score

reaches some specific level (e.g., "probably a target" or

higher). If the image in question meets this criterion, he will

act as though the object in the image really is a target, even

though he may be wrong some of the time. The outcome of the

observation, then, will be a target declaration if it reaches or

exceeds the criterion score, and a nontarget declaration if it

fails to reach that criterion.

The joint occurrence or a true taiget and a target
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declaration will result in a hit, which is just one of the four

possible outcomes. Other possible outcomes are false alarms,

missed targets, and correct declaration of nontargets.

The hit and false alarm measures of performance are defined

by TSD to be independent of target abundance. These two measures

can be plotted against each other to give a composite indication

of performance. If these values are plotted with false alarm

probability on the abscissa and hit probability on the ordinate,

they can be connected by a smooth curve which is the locus of all

the pairs of values expected if the criterion was to move

smoothly and continuously from left to right across the joint

distributions of noise and noise plus target.

Greening (1986) cautions that because TSD was developed to

describe and predict behavior in a comparatively simple,

controlled laboratory setting, some thought must be given to the

appropriate performance measures and to their relationships to

the tactical situation. At one extreme one might consider the

isolated attack aircraft with a sensor and an assigned target

type. Each observation must be judged as a target or nontarget.

Because he receives no vectoring information and no confirmation,

the observer's best estimate of his performance may be the

perceived target abundance. Thus, he may try to shift his

criterion to bring his target declarations into line with the

estimated target abundance. If he does this, the actual hit rate

could drop to very low levels for many conditions.

If, on the other hand, confirmation of targeting decisions
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is available after the decisions are made, the attacker can be

aware of hits, false alarms, missed targets, and rejected

nontargets as they occur or soon after. From these data and the

target density assumed previously, the observer may, in

principle, tailor his criterion location to the tactical

requirements. The major obstacle of using such a tuning

procedure is the complexity of the data-management, calculation

and optimizing procedures.

Greening (1986) and Greening and Foyle (1988) also explore

the effects of multiple observations, whether these observations

are independent or correlated. For the case of multiple

independent observations, we might consider an aircraft with two

different, but equally sensitive sensors, both observing the same

object. The accuracy of classification might be expected to be

improved over either sensor aLvne. For those cases in which the

outcomes agree, the prcbability that the consensus is correct

would be higher. The question is what is to be done for cases of

disagreement. If these cases are simply discarded or treated as

nontarget declarations, the overall performance level will drop.

Greening proposes two approaches to avoiding the equivocal cases

and thereby improving overall performance with two independent

observations. The first approach is that of contingent crite-

rion. Here the results of the first observation are used to

determine the location of the criterion for the second. For

example, if the first sensor gave a very high likelihood of a

target, the criterion level for the second can be lowered, and
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vice versa. The other approach Greening terms optional stopping.

Using this technique, the results of the first observation are

used to determine whether more observations are necessary. If

the first observation gives a substantially high or low score,

stop observing; if the score is intermediate, take another obser-

vation. If still more observations are feasible, the process can

continue, though the gains will fall off rapidly.

Probably a more common example of multiple observations in

target acquisition will be successive looks with the same sensor.

Here, the independent observation assumptions cannot be expected

to hold. To the extent that successive observations are corre-

lated, the amount of new information conveyed by the second

observation will be reduced. In estimating the effect of multi-

ple serial observations of the same object with the same sensor,

we run into the problem of redundant information or observation-

to-observation correlation. The correlation between responses on

successive observations would be expected to be rather high. As

a result, a second correlated observation might be expected to

raise overall performance (as measured by d') very little.

Greening and Foyle (1988) discuss the limitations of

statistical measures of targeting performance. A given target

sensing system can be used to maximize hit rate or minimize false

alarms, but can't improve all measures at once. The choice of

criterion values must depend upon tactical considerations. This

brings about the necessity of attaching a value, or cost, to each

possible outcome of the decision problem. Greening and Foyle
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(1988) suggest that the cost/value question be treated with the

Expected Value model borrowed from economic analysis. The Ex-

pected Value model requires that a cost/value be placed on every

possible outcome of an attack mission, and a cost placed on each

observation. The likelihood of each outcome at each decision

point must then be evaluated. Assuming that the observer is

rational, the choice with the higher Expected Value can be as-

sumed to be chosen at each choice if the Expected Values are

available. The Expected Value of the entire mission, from start

to finish, can then be calculated. The process is rather complex

and the difficulty of obtaining meaningful, comparable costs and

values for all outcomes should not be minimized. However, the

Expected Value approach may suggest ways of viewing the problem

which can be applied to real world target detection tasks. The

Expected Value measure is attractive because it reflects all of

the contingent probabilistic measures. However the task of

obtaining meaningful value and cost figures is difficult, and the

chosen costs/values are generally highly subjective.

KUPERMAN, WILSON AND PEREZ (1988)

Kuperman, Wilson and Perez (1988) conducted an operator

performance study in which simulated synthetic aperture radar

imagery containing either targets (large military vehicles) or

nontarget distractors (smaller military vehicles) was employed in

a target detection, recognition, and designation task. In

addition, a no target/no distractor condition wa6 included to

support estimation of the frequency of occurrence of background-
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induced false alarms.

A signal detection paradigm was employed since insight into

the decision-making criterion (accept/reject the presence of a

target) was desired along with performance (accuracy and speed)

estimates. The use of simulated imagery allowed for experimental

control of the independent variables (target condition,

resolution) and, therefore, avoided the problems that would have

resulted from reliance on actual imagery collections.

The stimuli were simulated synthetic aperture radar images

created via a radar model developed at the University of Kansas

(Geaga, 1985). Four distinctly different backgrounds were creat-

ed, essentially by means of varying the relative degree of forest

coverage and tree height. Each of the four backgrounds was

created as though imaged from three look directions (radar azi-

muths) in increments of 120 degrees.

Each of the resulting 12 scenes was generated under the

following target conditions: (1) one target, (2) three targets,

(3) one distractor element, (4) three distractor elements and (5)

no targets or distractor elements. Two radar resolutions were

simulated for each image. Thus, there were 120 unique images

(four backgrounds by three look directions by five

target/distractor/nontarget conditions by two resolutions).

For the lower resolution images, targets subtended approxi-

mately six minutes of arc with 8.2 lines on target, while dis-

tractor elements subtended approximately four minutes of arc with

5.4 lines. For the higher resolution images, targets subtended
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approximately eighteen minutes of arc with 24.7 lines on target,

while distractor elements subtended approximately twelve minutes

of arc with 16.1 lines. All images were scaled to the 0 to 255

range of intensity values.

The yes - no procedure was employed for the signal detection

task. The subjects' task was to search the image for the target

of interest. If no targets were present the subjects were to

press the "no target" (reject) button. If one or more targets

were thought to be present, the subjects' task was to move a

video cursor (using a trackball) from the center of the display

and place it over the center of the target and press a

"designate" button. Search times were recorded as well as the

"target" or "no target" declarations.

Data collection took place over five experimental sessions,

each representing one replication of the entire set of 120

images. Order of presentation within each session for each

subject was completely randomized with respect to all experimen-

tal variables.

The subject's response under each condition could be

characterized as a hit, miss, false alarm, or correct rejection.

The percentage of hits was viewed as an indication of the

discriminability of the targets from the distractors as a

function of background clutter and image resolution, whereas

false alarms were a measure of distractor effectiveness.

An analysis of hit rate revealed that targets presented

under the high resolution condition were responded to more quick-
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ly and more accurately than those presented under the low resolu-

tion viewing condition. False alarm rates were found to be

affected by the number of distractors in the image and, to a

lesser extent, by the image resolution. Response times also

showed an effect due to number of distractors. Neither false

alarm rate nor response times were greatly affected by resolu-

tion.

d' and B were computed as a function of image resolution.

The subjects demonstrated themselves to be more sensitive to the

difference between target and background surround (e.g., clutter

and distractors) under the high resolution view'.ng condition

relative to low resolution images. The value ot beta was lower

under high resolution relative to low resolution viewing condi-

tions. This indicates that subjects adopted a more stringent

criterion under the low resolution viewing condition; that is,

the subjects were more cautious when inspecting a low resolution

image than when they were inspecting a corresponding high resolu-

tion image. Thus, the signal detection analysis procedure al-

lowed the researchers to unambiguously determine if a variable

affected perceptual processes, decision making processes or both.

OZKAPTAN (1979)

Ozkaptan (1979) applied the principles of the theory of

signal detection to a target acquisition experiment which in-

volved three types of instructions and two levels of target-to-

background contrast. The purpose of the study was to evaluate
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the utility of the statistical parameters of the theory of signal

detection when used to adjust the responses (reaction time and

number of hits) of test participant.: to a comparable level of

performance which is free of the effects of response bias that

was introduced by the type of instructions.

Ozkaptan (1979) wished to develop a capability for trans-

forming operationally relevant measures to a bias free level.

The operationally relevant measures of interest were the number

of hits and time to detection which are the usual dependent

measures of a target acquisition experiment. The d' and B values

of a signal detection experiment, as dependent measures, are

usually evaluated in and of themselves without comparison to

other dependent variables. Ozkaptan felt that it was difficult

to evaluate the implications of these measures relative to the

operationally relevant dependent measures that may be associated

with them. He felt that the direct evaluation of these opera-

tionally relevant measures, when free of response bias, would

have more utility than information on d' and B alone or when used

in conjunction with them. Such bias-free measures would permit

the direct comparability of data between experiments which differ

in instruction and other utility variables.

A two factor experiment involving three levels of instruc-

tion and two levels of target-to-background contrast was em-

ployed. Twelve Army helicopter pilots were assigned to each

instructional level, with target-to-background contrast as a

within factor. The design was presented in the form of a 4 x 4

41



Latin Square to assure experimental control of the effects of

trial sequence, target background, and the order of presentation

of target-to-background contrast. The same design was repeated

in a second experiment, using different test participants, in

which only the levels of target-to-background contrast were

changed. In the first experiment, contrast levels of 35 and 45

percent were used, which are typical of field studies, while in

the second experiment, contrast levels typical of laboratory

tests, 14 and 17 percent, were used.

A target acquisition task during a simulated helicopter pop-

up maneuver at 1000 feet altitude was presented, with a 30-second

exposure time. The observer's task was to search for a single

20-foot military tank in various field locations, and at a slant

range of 2500 feet. An infrared scene of European terrain was

simulated, which was presented on a 50 by 50 degree backlighted

screen at 20 inches viewing distance. The scenes were presented

with and without targets in order to obtain an observer's hit

rate and false alarm rate, the basic procedural requirement of

signal detection theory.

It was expected that target acquisition performance (reac-

tioni time and number of hits) would differ as a function of the

type of instruction and level of target to background contrast

presented to the test participants. It was further expected that

the signal detection parameters of 8 and d' would reflect the

effects of the different instructional levels and target-to-

background contrast, respectively. The goal of the research was
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to evaluate the utility of the signal detection parameters of B

and d' when used in an analysis of covariance to adjust the

operationally relevant dependent measures to a bias-free level of

performance.

Analyses were conducted for eight dependent variables, which

involved the combination of reaction time and frequency of re-

sponse with respect to hits, false alarms, misses, and correct

rejections. The signal detection parameters for each observer

were calculated. The relationship between reaction time and the

number of hits to the signal detection parameters were tested by

means of regression analyses. The signal detection parameters

were then used as covariates in a two-way analysis of covariance

conducted separately for reaction time and the number of hits.

Ozkaptan (1979) found instructional set to be an important

determinant of aviator performance during target acquisition with

respect to reaction time and the number of hits. This effect may

confound the results of similar experiments when this variable is

left uncontrolled. He concluded that the signal detection model

provides a reasonable representation of the sensitivity and bias

effects associated with instructional set and target contrast,

with some loss of precision due to its application under

simulated "field" conditions. Further, the signal detection

parameters associated with sensitivity and bias can be used in an

analysis of covariance to adjust the frequency of hits between

target acquisition studies, to remove the effects of different

instructional sets as well as different contrast levels.
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However, they would also remove the difference in the number of

hits due to other variables such as different sensor systems.
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Section 7

SUMMARY AND CONCLUSIONS

An observer's performance in a target acquisition task may

be a function of properties of the target and imagery, (image

resolution, grazing angle, degree of camouflage) and the

operator's decision rule (presumed to be related to the payoff

for correctly identifying a target and the consequences

associated with false alarms).

The separation of factors that influence the observer's

attitudes from those that influence sensitivity is a major

contribution of the psychophysical application of statistical

decision theory. TSD techniques allow for studying the effects

of a particular variable, whether the effects of the variable are

on detectability or on the location of the observer's criterion.

The experimenter can thus observe whether systematic changes in

the value of the variable result in different points along a

single ROC curve (indicating that the variable affects the

location of the observer's criterion) or points located on

different ROC curves (indicating that the variable affects target

detectability or observer sensitivity). Values of d' and B can

be calculated for various experimental conditions. Manipulation

of an independent variable may result in changes in d', B, or

both.

It has been experimentally demonstrated that d', the TSD

measure of visual sensitivity, is not contaminated by the effects
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of variables which shift the observer's response criterion.

Further, d' values, unlike the different threshold values

obtained through the use of the various classical psychophysical

methods, remain relatively invariant when measured by different

experimental procedures. When the observers were required to say

"yes" or "no" in response to a designated time interval that

sometimes contained a signal, d' estimates were found to

approximate those obtained when the observer was required to rate

his confidence that a signal was or was not present. According

to Coombs (1970),

"It is, of course, a very substantial accomplishment
for a theory to provide predictability and integration
over a wide variety of experimental conditions and
procedures. It appears that for a given observer and
a given S/N ratio, d' is reasonable constant over
variations in B induced by changing the prior odds
and payoff matrix and, for the most part, over
variations in procedures..." (pg 199)

TSD offers significant advantages over classical operator

performance paradigms. It is certainly valuable in the

evaluation of human target acquisition performance in complex

sensor systems which may consist of the sensor, automatic target

recognizer (ATR), display, and human observer. In such a system,

the ATR has associated hit and false alarm rates which have been

adjusted to some predetermined criterion level. If the human

observer views only those images which the ATR has declared as

target images, the overall system false alarm rate should be

somewhat reduced. However there is also the possibility that the

human will reject actual targets declared by the ATR. The
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observer's decision criterion plays an important role in overall

system performance. The theory of signal detection allows

researchers to quantify the operator's decision criterion as well

as his visual sensitivity.
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GLOSSARY

a posteriori Probability of the truth of each
probability hypothesis after an event ek has occurred

a priori probability Probability of any particular state of
the world prior to an observation

ATR Automatic Target Recognizer

(Beta) Operator decision criterion

CR Correct rejection

Sm (Delta-m) A nonparametric statistic

d' (d-prime) Measure of perceptual
sensitivity

ek information or evidence about hi

FA False alarm

hi ith possible state of the world

Hj jth hypothesized state of the world

lij(ek) (Likelihood ratio) Ratio of the
probabilities of an event under two
different hypotheses

N Noise distribution

p(eklhi) Probability of ek conditional upon hi

ROC Receiver operating characteristic

Z (Sigma) Summation

SN Signal plus noise distribution

TSD Theory of Signal Detection
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